Opera Protocol
Specification

Guido, PEINNZ

I ntroduction

While Opera is in its experimental stages, therivkeworkings are hardly known. In
order to address this mystery (and my personabsity) | have looking in the Opera
symbols construction (encoding) process by compahe output symbols for various
callsign inputs. As it might have your interest teloat is happening behind the scenes,
here are my findings so far with Opera v1.1.9 t@\&

1. Message
First, a 51-bit message is constructed based oopbeator's call-sign. The message
contains in sequence:

bit 47-50 | 4 unused bits (set to zero)

bit 19-46 | 28-bit packed integer holding a comprdsestance of the
callsign

bit 3-18 16-bit check-sum of binary representatbbits 19-46
(this is the check-sum of the packed callsign)

bit 0-2 3-bit check-sum of binary representatiomit 19-3 (this
is the check-sum of the packed call-sign and ieckbum)

The 28-bit packed integer is constructed from@lcallsign characters, where the last
digit in the prefix must be aligned to thd Bosition. Each position is encoded in a certain
radix and character encoding mapping:

Position | Radix | Character encoding mapping
1 37 blank(0), A-Z(1-26), 0-9(27-37
2 36 A-Z(0-25), 0-9(26-36)
3 10 0-9(0-9)
4-6 27 blank(0), A-Z(1-26)

The check-sums are based on a CRC with polynorfiat x*° + X% + 1 also known as
CRC-16.Rationale for applying a 16-bit CRC is to be able to block invalid messages on
the receiver site while decoding a (error corrected) message. Note that:

a. check-sum is based on the binary representati&s{ll of the bits specified
(Rationale: should be not necessary, probably eipedreason as the application
can be based on string manipulations instead @irpioperations);

b. a zero in the high- or low byte of the CRC ressiltaplaced by respectively 2B
(hex) and 1B (hex), Rationale: should be not nexgssinclear why this is done;

c. the high- and the low bytes are swapped when pilteirmessage where for the 3-
bit check-sum only the least significant bits anaesidered;

2. Scrambling

Second, a 51-bit scrambled message is construgtegehns of a XOR operation with
message and a pseudo-random noise vector 70ABF38E)(ex). Rationale for
scrambling is to reduce repetitive zeros by enguion enough transitions in the data
independent on the end-users input, preventingadiegrhamming distances for zero
code words, nevertheless for the current code iise@ms not to be necessary as the
distance is constant for k=3.

3. Walsh-Hadamard code

Third, a Walsh-Hadamard code (k=3) is applied an3h-bit message resulting in a 119-
bit message. With k=3 the Walsh-Hadamard code ree@s/ 3 bits of the message to a
orthogonal codeword of lengtt?) = 7 bits, where the Hadamard code is obtained from
an inverse 8 order Hadamard matrix:

000 0000000 001 1010101 010 0110011 o1t 1100110

100 0001111 101 1011010 110 0111100 111 1101001

Rationale: Walsh-Hadamard code is an error-correcting code (block code) that may be
used on thereceiver site for forward error correction (FEC) and error detection. Doing
S0, relaxes the signal requirements while transmitting messages over very noise or
unreliable (fading) channels, approximating the Shannon capacity model. With k=3, the
minimum hamming distance of the code is 2 =4, with this code a theoretical receiver
can detect 2?-1 = 1 error and correct 269-1 = 0 errors. The Walsh-Hadamard code is
a locally decode-able code, which provides a way to recover parts of the original
message with high probability, while only looking at a small fraction of the received
word. Asan alternative to error-correction, list-decoding may recover the original
message on the receiver aslong as less than 1/2 of the bits in the received word have
been corrupted.

4. Interleaving

Fourth, the 119-bits message is block interleayediiting the bits by column in a 7-by-
17 matrix and reading back by rows into the mesdageonale: interleaving makes the
block encoded message | ess vulnerable against temporary decoding errors (fading, burst
errors) by scattering of the bits over the entire message (approximately written every 7
positions).

5. Manchester encoding

Fifth, the 119-bits message is Manchester encoaerdEEE802.3 convention) by
encoding a 1-0 transition for a 0, and a 0-1 ttarsior a 1, doubling the message length.
Note that bit 238 and 239 are set to one and ihatib omitted, resulting in a 239-bit
message. The binary representation contains thbagrto be transmitted.

Rationale: With Manchester encoding a transition is encoded for every data bit so that a
receiver isable to recover the clock.

6. Modulation

Sixth, in the event of an transmission event, guiescy that is not occupied is selected
(that is the frequency that has the least enegybjefore transmission), and each of the
239 symbols are transmitted by keying the trangmés CW on and off with a symbol
rate of 0.256*n s/symbol, where n is the integeoération mode OPn that corresponds
with the Opera frequency recommendation:

OP32 | 137.5-137.6 kHz

OP8 137.7-137.5, 501.5-501.6, 1837.3-1837.5 kHz

OP4 501.3-501.5, 1837.5-1837.9, 3576.3-3576.5, 329090.5, 7039.3-7039.5,
10136.3-10136.5, 14066.3-14066.5 kHz

OoP2 3576.5-3576.9, 5290.5-5290.9, 7039.5-7039.834.6-10136.9, 14066.5-14066.9,
18106.3-18106.5, 21075.3-21075.5, 24926.3-249286/6.3-28076.5, 50701.3
50701.5, 70252.3-70252.5 kHz

OP1 18106.5-18106.9, 21075.5-21075.9, 24926.5-289928076.5-28076.9, 50701.5
50701.9, 70252.5-70525.9 kHz

Discussion

On the decoder site, the inverse of above opemat®done in reverse order to retrieve
the callsign of a received broadcast. An intergstaature is to exploit the list-decoding
potential of the Walsh-Hadamard code in combinatith the CRC check-sums in the
message. With list-decoding, a set of messagehplisss is outputted and may be
evaluated for validity. This exchanges computapiower with receiver gain.

Example
Callsign = “AAL1AA “

1. Message
Character Encoding Mappings: 101110

Packed integer = (((((1)*36+0)*10+ 127+ 1)*27+1)*27 +0=7106319 =
0000011011000110111100001111 (binary)

CRC-16 of Packed integer binary =

CRC-16 of 0000011011000110111100001111 =

OCL1E (hex) (sourcenttp://www.zorc.breitbandkatze.de/crc.hyrrt
replace zero bytes and swap CRC = 1EOC (hex) =1100000001100

CRC-16 of Packed integer binary + CRC-16 binaGRC-16 of
00000110110001101111000011110001111000001100 =

6CAC (hex) - replace zero bytes and swap CRC = AC6C (hex) =
10010001011110110016G®

last 3 bits of swapped CRC =100

51-bit message = 0000000001101100011011110000101100000001100100

2. Scrambling
0000000001101100011011110000111100011110000011002BOwith Noise Vector:
111000010101011111100110110100000001100100010161011
111000010011101110001001110111110000011100011001111

3. Walsh-Hadamard code

Segment in 3: 111 000 010 011 101 110 001 001 11110 000 011 100 011 001 111
and lookup 7-bit codeword =

1101001 0000000 0110011 1100110 1011010011110 DA11010101 0111100
1101001 0111100 0000000 1100110 0001111 110011 0011101001

4. Interleave
Write by column in 7x17 matrix:
1101001
0000000
0110011
1100110
1011010
0111100
1010101
1010101
0111100
1101001

0111100

0000000

1100110

0001111

1100110

1010101

1101001

Read by column =
1001101101001011110110100111010101001011111010000001001110010010001
01111010111100011100000001110010100011010001011

5. Manchester encoding

Replacing 0 to Z and 1 by 01 and Z by 10:

Manchester encoded message =
0110100101100101100110100110010101011001011001101001001100110011010
0110010101010110011010101001100110101001011010010100110100110101001
1001010101100110010101011010100101011010101010101001010011001101010
010110011010100110016%

Insert 11 on front and remove last bit on tail =

Opera Symbols (length 239) =
1101101001011001011001101001100101010110010110001010110011001100110
1001100101010101100110101010011001101010010110100101001101001101010
0110010101011001100101010110101001010110101010001010110100110011010
10010110011010100110010

